Extreme Environments Focus Group June Meeting

June 8, 2021

Dr. Benjamin Greenhagen Planetary Spectroscopy Section Supervisor Johns Hopkins Applied Physics Laboratory

Facilitator_ExtremeEnvironments@jhuapl.edu

Today's Agenda

- LSIC Updates (2 min Greenhagen)
- Surface Environment Activity Survey and Final Steps (5 min Greenhagen)
- Surface Environment Activity Subgroup Rankings Discussion (15 min Greenhagen, Subgroup Leads)
- Featured Presentation (25 min Moorhead)
 - "The Primary Meteoroid Flux at the Moon and the Lunar South Pole"
- Open floor (time permitting)

LSIC Updates

LSIC Spring Meeting was May 11-12

- Presentations are now archived online
 - http://lsic.jhuapl.edu/News-and-Events/Agenda/index.php?id=124

Vertical Solar Array Technologies (VSAT) Meeting was May 27

- Joint meeting with Surface Power, Dust Mitigation, and Extreme Environments
- Presentations are now archived online (Surface Power page)
 - <u>http://lsic.jhuapl.edu/Focus-Areas/Surface-Power.php</u>

Upcoming LSIC Workshops (<u>http://lsic.jhuapl.edu/News-and-Events/</u>)

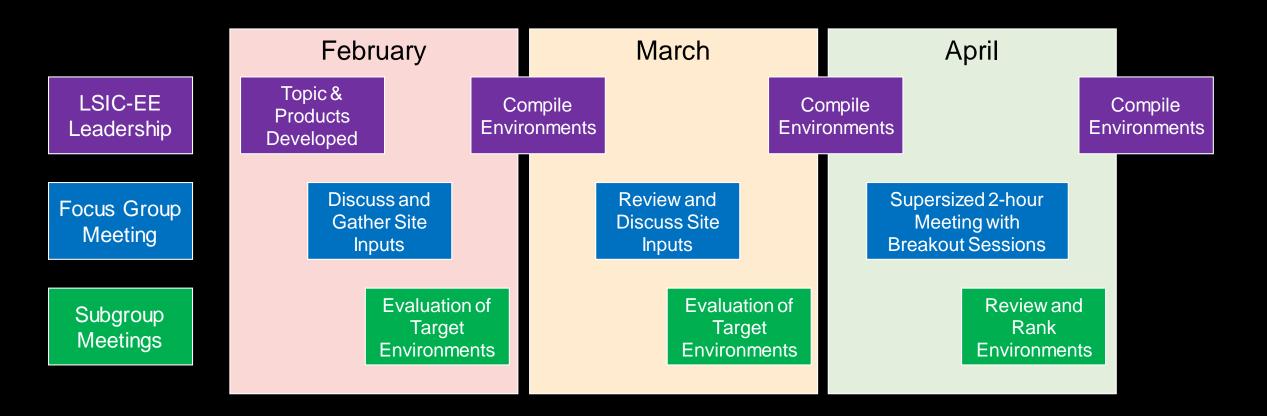
- Power Beaming Workshop (7/22-7/23/21)
- Commercial Lunar Payload Services Workshop (TBD Fall 2021)
- TBD Joint Focus Group Workshop(s) (starting Fall 2021)

'CONSORTIUM

Surface Environment Activity

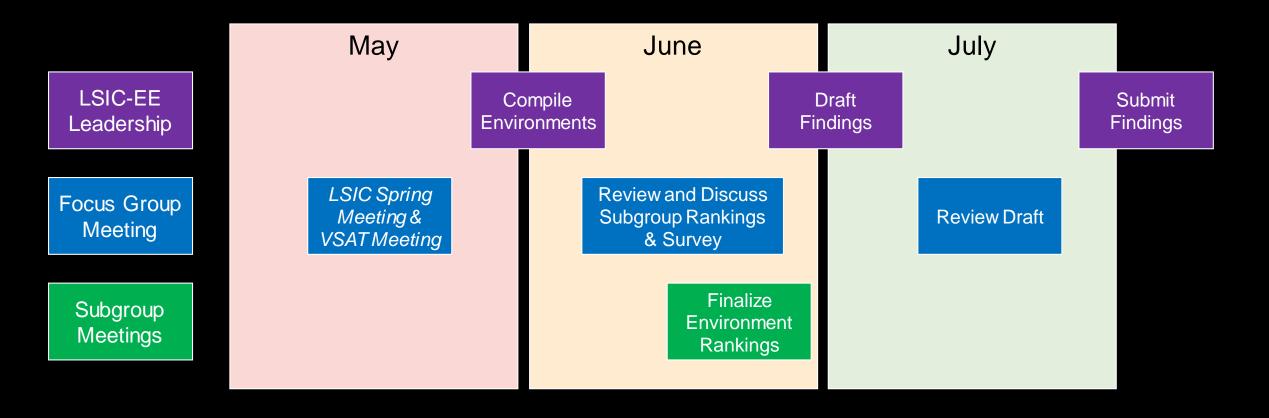
Topic: Identifying and Classifying Specific Lunar Surface Environments

- "Breaking Down the Lunar Environment Monolith"
- How do different environments stress technologies in different ways

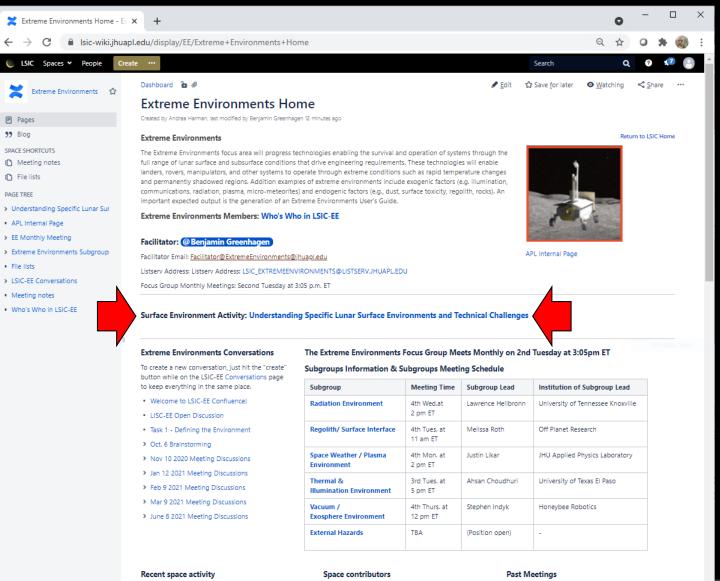

Polar Environments	Environmental Variations	Non-Polar Environments	Environmental Variations
Permanently Shadowed Regions (PSRs)	 PSRs with significant reflected illumination PSRs without significant reflected illumination PSRs with volatiles in the near-surface regolith PSRs with desiccated near-surface regolith 	Apollo-style Environments	MariaHighlands
Areas of High Illumination	 Naturally high illumination Mobility-enabled high illumination 	Topographic Margins	 Crater features (rims, peaks, floor fractures) Volcanic features (vents, domes, riles)
(>55% Illumination)	 Illuminated terrain with rover-accessible macro cold traps (10s to 100s+ meter PSRs) 	Lunar Pits & Lava Tubes	Mare basalt featuresImpact melt features
Mixed Polar Environments	 Illuminated terrain with rover-accessible micro cold traps (1 - 10 meter PSRs) Occasionally illuminated terrain with subsurface volatile stability Polar pits or lava tubes (hypothetical) 	Surface Anomalies	 Irregular Mare Patches Regolith Texture Anomalies (High/Low Dust, Pyroclastic, etc.) Magnetic Anomalies

Surface Environment Activity

Activities to Complete Before the LSIC Spring Meeting


II M

Surface Environment Activity


Activities to Complete After the LSIC Spring Meeting

M

New Activity Home on Confluence

https://lsic-wiki.jhuapl.edu/display/EE

 Benjamin Greenhagen (a minute ago) Stephen Indyk (24 minutes ago)

```
    13 April 2021
```

9 March 202

amin Greenhager

🚽 June 2021 Topic #2 - The Primary

O Space tools

(APL)

Surface Environment Activity

Survey

- Vote for the environment(s) you think we should prioritize for our next FG workshop(s) or working meeting(s)
- <u>https://forms.gle/QiKzFjLvLnXhdGgN8</u>
- Vote early and vote often (please try to respond by the end of this week)!

Review Draft Findings

- Findings will be on Confluence
- Brief discussion at July Focus Group Meeting, July 13th

Subgroup Environment Rankings

Summary of all Subgroups (https://lsic-wiki.jhuapl.edu/pages/viewpage.action?pageId=13340355)

Specific Environment	Radiation	Regolith / Surface	Space Weather / Plasma	Thermal & Illumination	Vacuum / Exosphere
P1. Permanently Shadowed Regions	5 (Tier 2)	1 (Tier 1)	4 (Tier 2)	1 (Both)	1
P2. Areas of High Illumination	4 (Tier 2)	6 (Tier 3)	6 (Tier 3)	3 (T) & 7 (I)	6
P3. Mixed Polar Environments	2 (Tier 1)	2 (Tier 1)	1 (Tier 1)	2 (T) & 3 (I)	1
NP1. Apollo-Style	1 (Tier 1)	7 (Tier 3)	7 (Tier 3)	5 (Both)	7
NP2. Topographic Margins	3 (Tier 1)	5 (Tier 2)	3 (Tier 2)	6 (T) & 4 (I)	3
NP3. Lunar Pits / Lava Tubes	6 (Tier 3)	4 (Tier 2)	5 (Tier 3)	4 (T) & 2 (I)	4
NP4. Surface Anomalies	7 (Tier 3)	3 (Tier 2)	2 (Tier 1)	7 (T) & 5 (I)	5

Subgroup Environment Rankings

Radiation Environment Subgroup (https://lsic-wiki.jhuapl.edu/display/EE/RadEnv+lunar+surface+environments+ranking)

Specific Environment	Radiation	Notes			
NP1. Apollo-Style	1 (Tier 1)	highest GCR flux, shelter needed for SEP event, largest source of background/interference for instruments			
P3. Mixed Polar Environments	2 (Tier 1)	highly variable rad environment due to variable local shielding, regolith composition affects albedo neutron spectrum			
NP2. Topographic Margins	3 (Tier 1)	local variations in rad environment due to variations in shielding provided by topographical features (crater walls, etc.)			
P2. Areas of High Illumination	4 (Tier 2)	highest GCR dose of polar sites, but less uncertainty in predicted dose			
P1. Permanently Shadowed Regions	5 (Tier 2)	same comment as P3, but variability and associated uncertainty less than Pa			
NP3. Lunar Pits / Lava Tubes	6 (Tier 3)	Shielding inside lava tubes is very thick, very low doses. Interesting to look at dose inside near entrance, though.			
NP4. Surface Anomalies	7 (Tier 3)	Magnetic field strengths too low to affect ionizing radiation environment			

Subgroup Environment Rankings

Regolith / Surface Interface Subgroup (<u>https://lsic-wiki.jhuapl.edu/display/EE/RSI%3A+Landing+Sites+Rankings</u>)

Specific Environment	Regolith / Surface	Notes			
P1. Permanently Shadowed Regions	1 (Tier 1)	Extreme conditions w/ potential volatile reactions and physical differences. Temperatures may exceed expected thermal performance of suit materials.			
P3. Mixed Polar Environments	2 (Tier 1)	Need to transition between extremes. Potential interaction with volatiles.			
NP4. Surface Anomalies	3 (Tier 2)	Many unknowns, especially for properties.			
NP3. Lunar Pits / Lava Tubes	4 (Tier 2)	Many unknowns, but likely very different compared to surface regolith. While water ice may not be stable in the tube entrances at lower latitudes, sulfur may be. The expected sharp boulders may pose hazardous for spacesuits.			
NP2. Topographic Margins	5 (Tier 2)	Challenges for navigation but fewer unknowns.			
P2. Areas of High Illumination	6 (Tier 3)	Less characterized but longer days to maintain properties and less frequent ESD than NP1.			
NP1. Apollo-Style	7 (Tier 3)	Fairly well characterized.			

Subgroup Environment Rankings

Space Weather / Plasma Subgroup (https://lsic-wiki.jhuapl.edu/display/EE/SWPE%3A+Surface+Environment+Rankings)

Specific Environment	Space Weather / Plasma	Notes			
P3. Mixed Polar Environments	1 (Tier 1)	Large uncertainties; potential for transient environments.			
NP4. Surface Anomalies	2 (Tier 1)	Big uncertainty & variable; not very well understood			
NP2. Topographic Margins	3 (Tier 2)	Potential gradients expected across adjacent surfaces / regions (large dV -> risk of ESD)			
P1. Permanently Shadowed Regions	4 (Tier 2)	Technically very challenging but generally better understood			
NP3. Lunar Pits / Lava Tubes	5 (Tier 3)	Unlikely to be much charging in tubes; pits may fit elsewhere			
P2. Areas of High Illumination	6 (Tier 3)	High photocurrent; comparatively well-studied			
NP1. Apollo-Style	7 (Tier 3)	Large absolute charging expected (e.g. kV night side during magnetotail passage); comparatively well known, however. Similar comments regarding terminator			

Subgroup Environment Rankings

Thermal & Illumination Subgroup (https://lsic-wiki.jhuapl.edu/display/EE/Lunar+Surface+Environment+Ranking)

Specific Environment	Thermal	Illumination	Notes
P1. Permanently Shadowed Regions	1	1	
P3. Mixed Polar Environments	2	3	
P2. Areas of High Illumination	3	7	
NP3. Lunar Pits / Lava Tubes	4	2	Radiator Design/Heat Rejection Challenges
NP1. Apollo-Style	5	5	
NP2. Topographic Margins	6	4	
NP4. Surface Anomalies	7	5	

Subgroup Environment Rankings

Vacuum / Exosphere Subgroup (<u>https://lsic-wiki.jhuapl.edu/display/EE/VEE+Lunar+Surface+Environment+Ranking</u>)

Specific Environment	Vacuum / Exosphere	Notes			
P1. Permanently Shadowed Regions	1	Many unknowns with PSR environment.			
P3. Mixed Polar Environments	1	Difficult to deal with technology challenges for a transient environment. Many unknowns with PSR environment. Exploring Mixed Polar Environments has to encounter two difficult environmental condition sets.			
NP2. Topographic Margins	3	Transitions have more and more complex requirements.			
NP3. Lunar Pits / Lava Tubes	4	May provide complex atmospheric conditions due to exploration interactions. Will out-gassing material from exploratory system become trapped in this space and affect any instrument measurements?			
NP4. Surface Anomalies	5	Complex, but likely similar vacuum environment conditions to what is currently understood.			
P2. Areas of High Illumination	6	Better understood conditions, most likely fewer surfaces with out- gassing properties.			
NP1. Apollo-Style	7	Studied and best understood environment of this environment set.			

Subgroup Environment Rankings

Summary of all Subgroups (https://lsic-wiki.jhuapl.edu/pages/viewpage.action?pageId=13340355)

Specific Environment	Radiation	Regolith / Surface	Space Weather / Plasma	Thermal & Illumination	Vacuum / Exosphere
P1. Permanently Shadowed Regions	5 (Tier 2)	1 (Tier 1)	4 (Tier 2)	1 (Both)	1
P2. Areas of High Illumination	4 (Tier 2)	6 (Tier 3)	6 (Tier 3)	<mark>3 (T)</mark> & 7 (I)	6
P3. Mixed Polar Environments	2 (Tier 1)	2 (Tier 1)	1 (Tier 1)	2 (T) & 3 (I)	1
NP1. Apollo-Style	1 (Tier 1)	7 (Tier 3)	7 (Tier 3)	5 (Both)	7
NP2. Topographic Margins	3 (Tier 1)	5 (Tier 2)	3 (Tier 2)	6 (T) & 4 (I)	3
NP3. Lunar Pits / Lava Tubes	6 (Tier 3)	4 (Tier 2)	5 (Tier 3)	4 (T) & 2 (I)	4
NP4. Surface Anomalies	7 (Tier 3)	3 (Tier 2)	2 (Tier 1)	7 (T) & 6 (I)	5

Surface Environment Activity

Survey

- Vote for the environment(s) you think we should prioritize for our next FG workshop(s) or working meeting(s)
- <u>https://forms.gle/QiKzFjLvLnXhdGgN8</u>
- Vote early and vote often (please try to respond by the end of this week)!

Review Draft Findings

- Findings will be on Confluence
- Brief discussion at July Focus Group Meeting, July 13th

CONSORTIUM

Featured Presentation

- The Primary Meteoroid Flux at the Moon and the Lunar South Pole
 - Althea Moorhead, NASA Meteoroid Environment Office, MSFC

JOHNS HOPKINS APPLIED PHYSICS LABORATORY